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1. Executive Summary
This guide provides comprehensive patterns and best practices for implementing Feature Store on Databricks using Unity Catalog. Feature Store enables teams to create, share, and manage ML features across the organization, ensuring consistency between training and serving while reducing duplicate feature engineering efforts.
What is a Feature Store?
A Feature Store is a centralized repository for storing, managing, and serving ML features. It bridges the gap between data engineering and data science by providing:
Feature Reusability: Define features once, use across multiple models
Consistency: Same feature logic for training and real-time serving
Discovery: Find and reuse existing features via metadata and search
Governance: Track feature lineage, access control, and quality metrics
Point-in-Time Correctness: Avoid data leakage with time-travel queries
Why Feature Store Matters
Without a Feature Store, organizations face several challenges:
Feature Duplication: Teams recreate the same features independently
Training-Serving Skew: Features computed differently in training vs. production
Data Leakage: Incorrect temporal joins cause overly optimistic model metrics
Slow Iteration: Every new model requires rebuilding feature pipelines
Poor Governance: No visibility into feature usage, quality, or lineage
2. Feature Store Architecture
2.1 Unity Catalog Feature Engineering Architecture
┌─────────────────────────────────────────────────────────────────────────────┐
│                    FEATURE STORE ARCHITECTURE                                │
├─────────────────────────────────────────────────────────────────────────────┤
│                                                                              │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                     DATA SOURCES                                     │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐  ┌────────────┐ │    │
│  │  │   Bronze    │  │   Silver    │  │  External   │  │  Streaming │ │    │
│  │  │   Tables    │  │   Tables    │  │   APIs      │  │   Sources  │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────┘  └────────────┘ │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │                 FEATURE ENGINEERING PIPELINES                        │    │
│  │  ┌───────────────────────────────────────────────────────────────┐  │    │
│  │  │  • Aggregations (sum, avg, count over time windows)           │  │    │
│  │  │  • Transformations (encoding, scaling, binning)               │  │    │
│  │  │  • Joins (enrichment from dimension tables)                   │  │    │
│  │  │  • Window Functions (rolling statistics, lag features)         │  │    │
│  │  └───────────────────────────────────────────────────────────────┘  │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                                      ▼                                       │
│  ┌─────────────────────────────────────────────────────────────────────┐    │
│  │              UNITY CATALOG FEATURE TABLES                            │    │
│  │  ┌─────────────┐  ┌─────────────┐  ┌─────────────────────────────┐ │    │
│  │  │  Customer   │  │  Product    │  │  Transaction                │ │    │
│  │  │  Features   │  │  Features   │  │  Features                   │ │    │
│  │  │             │  │             │  │                             │ │    │
│  │  │ • tenure    │  │ • category  │  │ • txn_count_7d              │ │    │
│  │  │ • lifetime  │  │ • price_tier│  │ • avg_amount_30d            │ │    │
│  │  │   _value    │  │ • popularity│  │ • last_txn_days             │ │    │
│  │  └─────────────┘  └─────────────┘  └─────────────────────────────┘ │    │
│  │                                                                      │    │
│  │  ┌─────────────────────────────────────────────────────────────┐    │    │
│  │  │  Metadata: Primary Keys │ Timestamp Keys │ Descriptions     │    │    │
│  │  └─────────────────────────────────────────────────────────────┘    │    │
│  └─────────────────────────────────────────────────────────────────────┘    │
│                                      │                                       │
│                    ┌─────────────────┴─────────────────┐                    │
│                    ▼                                   ▼                    │
│  ┌──────────────────────────────┐   ┌──────────────────────────────┐       │
│  │      TRAINING                │   │      SERVING                  │       │
│  │  ┌────────────────────────┐  │   │  ┌────────────────────────┐  │       │
│  │  │  create_training_set() │  │   │  │  Online Store (optional)│  │       │
│  │  │  • Point-in-time join  │  │   │  │  • Low-latency lookup   │  │       │
│  │  │  • Feature selection   │  │   │  │  • Key-value serving    │  │       │
│  │  │  • Label alignment     │  │   │  └────────────────────────┘  │       │
│  │  └────────────────────────┘  │   │  ┌────────────────────────┐  │       │
│  │  ┌────────────────────────┐  │   │  │  Batch Serving          │  │       │
│  │  │  TrainingSet → Model   │  │   │  │  • score_batch()        │  │       │
│  │  │  • Log to MLflow       │  │   │  │  • Automatic feature    │  │       │
│  │  │  • Track lineage       │  │   │  │    retrieval            │  │       │
│  │  └────────────────────────┘  │   │  └────────────────────────┘  │       │
│  └──────────────────────────────┘   └──────────────────────────────┘       │
│                                                                              │
└─────────────────────────────────────────────────────────────────────────────┘
2.2 Feature Table vs Regular Delta Table
Understanding the difference between feature tables and regular Delta tables is crucial:
	Aspect
	Regular Delta Table
	Feature Table

	Primary Key
	Optional
	Required

	Timestamp Key
	Optional
	Required for time-series

	Lookup Support
	Manual joins
	Automatic via FeatureEngineeringClient

	Training Set Creation
	Manual joins
	Point-in-time correct joins

	Lineage Tracking
	Basic table lineage
	Full feature → model lineage

	Model Integration
	Manual
	Automatic feature lookup at inference



3. Creating Feature Tables
3.1 Basic Feature Table Creation
Feature tables must have a primary key for entity lookup. For time-series features, include a timestamp key for point-in-time correctness:
from databricks.feature_engineering import FeatureEngineeringClient, FeatureLookup
from pyspark.sql import functions as F
from pyspark.sql.window import Window

# Initialize Feature Engineering client
fe = FeatureEngineeringClient()

# Create customer features from transaction data
transactions_df = spark.table("silver.transactions")

# Define aggregation windows
customer_features_df = transactions_df.groupBy("customer_id").agg(
    # Lifetime metrics
    F.count("*").alias("total_transactions"),
    F.sum("amount").alias("lifetime_value"),
    F.avg("amount").alias("avg_transaction_amount"),
    F.max("amount").alias("max_transaction_amount"),
    F.min("transaction_date").alias("first_transaction_date"),
    F.max("transaction_date").alias("last_transaction_date"),
    F.countDistinct("merchant_id").alias("unique_merchants"),
    F.countDistinct("category").alias("unique_categories")
).withColumn(
    # Derived features
    "days_since_first_txn",
    F.datediff(F.current_date(), F.col("first_transaction_date"))
).withColumn(
    "days_since_last_txn",
    F.datediff(F.current_date(), F.col("last_transaction_date"))
).withColumn(
    "avg_days_between_txns",
    F.col("days_since_first_txn") / F.col("total_transactions")
)

# Create feature table in Unity Catalog
# This registers the table with Feature Store metadata
fe.create_table(
    name="ml_catalog.features.customer_lifetime_features",
    primary_keys=["customer_id"],
    df=customer_features_df,
    description="Customer lifetime value and transaction behavior features",
    tags={"team": "data-science", "domain": "customer"}
)
3.2 Time-Series Feature Tables
For features that change over time, include a timestamp key to enable point-in-time correct lookups:
from pyspark.sql import functions as F
from pyspark.sql.window import Window

# Create rolling window features with timestamps
# These capture customer behavior at specific points in time

transactions_df = spark.table("silver.transactions")

# Define rolling windows
window_7d = Window.partitionBy("customer_id") \
    .orderBy(F.col("transaction_date").cast("timestamp").cast("long")) \
    .rangeBetween(-7 * 86400, 0)  # 7 days in seconds

window_30d = Window.partitionBy("customer_id") \
    .orderBy(F.col("transaction_date").cast("timestamp").cast("long")) \
    .rangeBetween(-30 * 86400, 0)

window_90d = Window.partitionBy("customer_id") \
    .orderBy(F.col("transaction_date").cast("timestamp").cast("long")) \
    .rangeBetween(-90 * 86400, 0)

# Calculate rolling features for each transaction date
customer_rolling_features = transactions_df \
    .withColumn("txn_count_7d", F.count("*").over(window_7d)) \
    .withColumn("txn_count_30d", F.count("*").over(window_30d)) \
    .withColumn("txn_count_90d", F.count("*").over(window_90d)) \
    .withColumn("total_amount_7d", F.sum("amount").over(window_7d)) \
    .withColumn("total_amount_30d", F.sum("amount").over(window_30d)) \
    .withColumn("total_amount_90d", F.sum("amount").over(window_90d)) \
    .withColumn("avg_amount_7d", F.avg("amount").over(window_7d)) \
    .withColumn("avg_amount_30d", F.avg("amount").over(window_30d)) \
    .withColumn("unique_merchants_30d", F.size(F.collect_set("merchant_id").over(window_30d))) \
    .select(
        "customer_id",
        "transaction_date",
        "txn_count_7d", "txn_count_30d", "txn_count_90d",
        "total_amount_7d", "total_amount_30d", "total_amount_90d",
        "avg_amount_7d", "avg_amount_30d",
        "unique_merchants_30d"
    ).distinct()

# Create time-series feature table
fe.create_table(
    name="ml_catalog.features.customer_rolling_features",
    primary_keys=["customer_id"],
    timestamp_keys=["transaction_date"],  # Enables point-in-time lookups
    df=customer_rolling_features,
    description="Rolling window transaction features for customer behavior modeling",
    tags={"team": "data-science", "domain": "customer", "frequency": "daily"}
)
3.3 Updating Feature Tables
Feature tables should be updated regularly as new data arrives:
from databricks.feature_engineering import FeatureEngineeringClient

fe = FeatureEngineeringClient()

# Method 1: Merge updates into existing table
# Use this for incremental updates to avoid reprocessing all data
fe.write_table(
    name="ml_catalog.features.customer_lifetime_features",
    df=new_customer_features_df,
    mode="merge"  # Upsert based on primary key
)

# Method 2: Overwrite entire table
# Use this for full refresh when recomputing all features
fe.write_table(
    name="ml_catalog.features.customer_lifetime_features",
    df=full_customer_features_df,
    mode="overwrite"
)

# Method 3: Streaming updates for real-time features
# For features that need continuous updates
streaming_features_df = spark.readStream \
    .format("delta") \
    .table("silver.transactions")

# Process and write as streaming
streaming_features_df.writeStream \
    .foreachBatch(lambda df, batch_id: fe.write_table(
        name="ml_catalog.features.customer_realtime_features",
        df=compute_features(df),
        mode="merge"
    )) \
    .trigger(processingTime="5 minutes") \
    .start()
4. Creating Training Sets
4.1 Point-in-Time Correct Training Sets
The most critical aspect of Feature Store is creating training sets with point-in-time correctness. This prevents data leakage by ensuring features are computed as of the label timestamp:
from databricks.feature_engineering import FeatureEngineeringClient, FeatureLookup

fe = FeatureEngineeringClient()

# Load training labels with timestamps
# These are the outcomes we want to predict
training_labels = spark.sql("""
    SELECT
        customer_id,
        event_date as label_timestamp,
        churned as label
    FROM gold.customer_churn_labels
    WHERE event_date BETWEEN '2024-01-01' AND '2024-12-31'
""")

# Define which features to include
# Each FeatureLookup specifies a feature table and columns
feature_lookups = [
    # Static customer features (no timestamp needed)
    FeatureLookup(
        table_name="ml_catalog.features.customer_lifetime_features",
        feature_names=[
            "total_transactions",
            "lifetime_value",
            "avg_transaction_amount",
            "days_since_first_txn"
        ],
        lookup_key="customer_id"
    ),
    # Time-series features (uses timestamp for point-in-time lookup)
    FeatureLookup(
        table_name="ml_catalog.features.customer_rolling_features",
        feature_names=[
            "txn_count_7d",
            "txn_count_30d",
            "total_amount_30d",
            "avg_amount_30d"
        ],
        lookup_key="customer_id",
        timestamp_lookup_key="label_timestamp"  # Point-in-time join
    ),
    # Demographic features
    FeatureLookup(
        table_name="ml_catalog.features.customer_demographics",
        feature_names=[
            "age_bucket",
            "income_bracket",
            "region"
        ],
        lookup_key="customer_id"
    )
]

# Create training set
# This performs automatic point-in-time joins
training_set = fe.create_training_set(
    df=training_labels,
    feature_lookups=feature_lookups,
    label="label",
    exclude_columns=["label_timestamp"]  # Don't include in features
)

# Convert to pandas for sklearn training
training_df = training_set.load_df()
print(f"Training set shape: {training_df.count()} rows, {len(training_df.columns)} columns")

# View feature lineage
training_df.display()
4.2 Understanding Point-in-Time Correctness
Point-in-time correctness is crucial for avoiding data leakage. Here's how it works:
Timeline Example:

    Customer 123's Transaction History:
    ├─────────────────────────────────────────────────────┤
    │                                                     │
    Day 1     Day 15      Day 30      Day 45      Day 60
    └─────┬─────┴─────┬─────┴─────┬─────┴─────┬─────┴─────┤
          │           │           │           │           │
          │           │           │    LABEL  │           │
          │           │           │  (churned │           │
          │           │           │  on day 30)           │
          │           │           │           │           │

    ✓ CORRECT: Features computed using data BEFORE day 30
      - txn_count_30d = transactions from day 1-30
      - No future data used

    ✗ INCORRECT: Features include data AFTER label date
      - Would include transactions from day 31-60
      - Creates artificially good model performance
      - Model fails in production (can't see future)
4.3 Feature Selection and Transformation
from databricks.feature_engineering import FeatureEngineeringClient, FeatureLookup, FeatureFunction

fe = FeatureEngineeringClient()

# Define on-demand feature transformations
# These are computed at training/inference time
@feature_function
def compute_recency_score(days_since_last_txn):
    """
    Convert days since last transaction to a recency score.
    More recent = higher score.
    """
    import numpy as np
    return np.exp(-days_since_last_txn / 30)  # Exponential decay

# Use feature functions in lookups
feature_lookups = [
    FeatureLookup(
        table_name="ml_catalog.features.customer_lifetime_features",
        feature_names=["lifetime_value", "total_transactions"],
        lookup_key="customer_id"
    ),
    # On-demand computed feature
    FeatureFunction(
        udf_name="compute_recency_score",
        output_name="recency_score",
        input_bindings={
            "days_since_last_txn": "ml_catalog.features.customer_lifetime_features.days_since_last_txn"
        }
    )
]
5. Model Training with Feature Store
5.1 Training Models with Automatic Feature Logging
When training models with Feature Store, MLflow automatically logs feature table metadata for reproducibility:
from databricks.feature_engineering import FeatureEngineeringClient
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.model_selection import train_test_split
import mlflow

fe = FeatureEngineeringClient()

# Create training set (as shown above)
training_set = fe.create_training_set(
    df=training_labels,
    feature_lookups=feature_lookups,
    label="label"
)

# Load as pandas DataFrame
training_df = training_set.load_df().toPandas()

# Split data
X = training_df.drop(columns=["label", "customer_id"])
y = training_df["label"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

# Train model with MLflow tracking
mlflow.set_experiment("/Shared/experiments/customer-churn-with-features")

with mlflow.start_run() as run:
    # Train model
    model = GradientBoostingClassifier(
        n_estimators=100,
        max_depth=5,
        learning_rate=0.1
    )
    model.fit(X_train, y_train)

    # Evaluate
    from sklearn.metrics import accuracy_score, roc_auc_score
    y_pred = model.predict(X_test)
    y_prob = model.predict_proba(X_test)[:, 1]

    mlflow.log_metrics({
        "accuracy": accuracy_score(y_test, y_pred),
        "roc_auc": roc_auc_score(y_test, y_prob)
    })

    # Log model with feature metadata
    # This enables automatic feature lookup at inference time
    fe.log_model(
        model=model,
        artifact_path="model",
        flavor=mlflow.sklearn,
        training_set=training_set,
        registered_model_name="ml_catalog.models.customer_churn_model"
    )

    print(f"Model logged with run_id: {run.info.run_id}")
5.2 Model Lineage and Governance
When you log a model with Feature Store, it captures complete lineage:
from mlflow.tracking import MlflowClient

client = MlflowClient()

# Get model version details
model_version = client.get_model_version(
    name="ml_catalog.models.customer_churn_model",
    version="1"
)

# View feature dependencies (via Unity Catalog Lineage)
# In Catalog Explorer:
# 1. Navigate to the model
# 2. Click "Lineage" tab
# 3. See all upstream feature tables

# Programmatic lineage access
from databricks.sdk import WorkspaceClient
w = WorkspaceClient()

lineage = w.lineage.get_lineage(
    table_name="ml_catalog.models.customer_churn_model",
    include_entity_lineage=True
)

for upstream in lineage.upstream_tables:
    print(f"Depends on: {upstream.name}")
6. Model Serving with Feature Lookup
6.1 Batch Scoring with Automatic Feature Retrieval
At inference time, you only need to provide the lookup keys. Feature Store automatically retrieves the latest feature values:
from databricks.feature_engineering import FeatureEngineeringClient

fe = FeatureEngineeringClient()

# Load model (includes feature metadata)
model_uri = "models:/ml_catalog.models.customer_churn_model@champion"

# New customers to score - only need the lookup keys
new_customers = spark.sql("""
    SELECT customer_id
    FROM gold.active_customers
    WHERE last_activity_date >= current_date() - INTERVAL 30 DAYS
""")

# Score batch - features are automatically retrieved
# No need to manually join feature tables!
predictions = fe.score_batch(
    model_uri=model_uri,
    df=new_customers
)

# Predictions include the customer_id and predicted churn probability
predictions.write.format("delta") \
    .mode("overwrite") \
    .saveAsTable("gold.customer_churn_predictions")
6.2 Real-Time Serving with Online Feature Store
For low-latency serving, publish features to an online store:
from databricks.feature_engineering import FeatureEngineeringClient
from databricks.feature_engineering.online_store import OnlineStoreSpec

fe = FeatureEngineeringClient()

# Define online store specification
# Databricks can publish to various online stores
online_store_spec = OnlineStoreSpec(
    type="DynamoDB",  # or "CosmosDB", "Redis", etc.
    cloud="AWS",
    region="us-east-1",
    read_secret_prefix="production/feature-store"
)

# Publish feature table to online store
fe.publish_table(
    name="ml_catalog.features.customer_lifetime_features",
    online_store=online_store_spec,
    filter_condition="days_since_last_txn < 365",  # Only active customers
    mode="merge"
)

# At serving time, features are fetched from online store
# with low latency (single-digit milliseconds)
7. Feature Store Best Practices
7.1 Feature Naming Conventions
# Recommended naming patterns:

# Entity-level features: {entity}_{metric}
# Examples:
# - customer_lifetime_value
# - customer_total_transactions
# - product_avg_rating

# Time-window features: {entity}_{metric}_{window}
# Examples:
# - customer_txn_count_7d
# - customer_total_amount_30d
# - product_views_24h

# Derived features: {entity}_{transformation}_{base_metric}
# Examples:
# - customer_log_lifetime_value
# - customer_normalized_txn_amount
# - product_zscore_rating
7.2 Feature Table Organization
-- Organize feature tables by domain in Unity Catalog

-- Catalog structure:
-- ml_catalog
--   └── features
--       ├── customer_*        (customer domain)
--       ├── product_*         (product domain)
--       ├── transaction_*     (transaction domain)
--       └── session_*         (web/app session domain)

-- Example schema for customer domain
CREATE SCHEMA IF NOT EXISTS ml_catalog.features;

COMMENT ON SCHEMA ml_catalog.features IS
'Feature tables for ML models. Primary keys and timestamp keys enable
point-in-time correct training set creation.';
7.3 Feature Quality Monitoring
from databricks.sdk import WorkspaceClient

w = WorkspaceClient()

# Set up quality monitoring on feature tables
monitor = w.quality_monitors.create(
    table_name="ml_catalog.features.customer_lifetime_features",
    assets_dir="/Shared/monitors/features",
    output_schema_name="ml_catalog.feature_monitoring",
    time_series={
        "timestamp_col": "_updated_at",
        "granularities": ["1 day"]
    },
    custom_metrics=[
        {
            "name": "null_rate",
            "definition": "COUNT_IF(lifetime_value IS NULL) / COUNT(*)",
            "type": "aggregate"
        },
        {
            "name": "negative_value_rate",
            "definition": "COUNT_IF(lifetime_value < 0) / COUNT(*)",
            "type": "aggregate"
        }
    ]
)

# Alert on feature quality issues
# Configure in monitor settings or via separate alerting
7.4 Feature Documentation
from databricks.feature_engineering import FeatureEngineeringClient

fe = FeatureEngineeringClient()

# Update feature table metadata
fe.set_feature_table_tag(
    table_name="ml_catalog.features.customer_lifetime_features",
    key="data_owner",
    value="customer-analytics-team"
)

fe.set_feature_table_tag(
    table_name="ml_catalog.features.customer_lifetime_features",
    key="refresh_frequency",
    value="daily"
)

fe.set_feature_table_tag(
    table_name="ml_catalog.features.customer_lifetime_features",
    key="sla",
    value="updated by 6am UTC"
)

# Document individual features with comments
spark.sql("""
    ALTER TABLE ml_catalog.features.customer_lifetime_features
    ALTER COLUMN lifetime_value
    COMMENT 'Total monetary value of all customer transactions in USD'
""")

spark.sql("""
    ALTER TABLE ml_catalog.features.customer_lifetime_features
    ALTER COLUMN days_since_first_txn
    COMMENT 'Number of days since customer first transaction (tenure)'
""")
8. Advanced Patterns
8.1 Feature Pipelines with Delta Live Tables
import dlt
from pyspark.sql import functions as F

# Bronze: Raw transaction events
@dlt.table(comment="Raw transaction events from source systems")
def bronze_transactions():
    return spark.readStream.format("cloudFiles") \
        .option("cloudFiles.format", "json") \
        .load("/data/transactions/")

# Silver: Cleaned transactions
@dlt.table(comment="Cleaned and validated transactions")
@dlt.expect_or_drop("valid_amount", "amount > 0")
@dlt.expect_or_drop("valid_customer", "customer_id IS NOT NULL")
def silver_transactions():
    return dlt.read_stream("bronze_transactions") \
        .select(
            "customer_id",
            "transaction_id",
            "amount",
            "merchant_id",
            "category",
            F.to_timestamp("event_time").alias("transaction_timestamp")
        )

# Gold: Feature table (aggregated daily)
@dlt.table(
    comment="Daily customer transaction features for ML",
    table_properties={"quality": "gold", "pipelines.feature_table": "true"}
)
def customer_daily_features():
    return dlt.read("silver_transactions") \
        .groupBy(
            "customer_id",
            F.date_trunc("day", "transaction_timestamp").alias("feature_date")
        ).agg(
            F.count("*").alias("daily_txn_count"),
            F.sum("amount").alias("daily_total_amount"),
            F.avg("amount").alias("daily_avg_amount"),
            F.countDistinct("merchant_id").alias("daily_unique_merchants")
        )
8.2 Cross-Entity Features
# Features that combine multiple entities (e.g., customer-product affinity)

customer_product_features = spark.sql("""
    WITH customer_category_stats AS (
        SELECT
            customer_id,
            category,
            COUNT(*) as purchase_count,
            SUM(amount) as category_spend,
            ROW_NUMBER() OVER (
                PARTITION BY customer_id
                ORDER BY COUNT(*) DESC
            ) as category_rank
        FROM silver.transactions
        GROUP BY customer_id, category
    )
    SELECT
        customer_id,
        COLLECT_LIST(
            CASE WHEN category_rank <= 3 THEN category END
        ) as top_3_categories,
        MAX(CASE WHEN category_rank = 1 THEN category END) as primary_category,
        MAX(CASE WHEN category_rank = 1 THEN category_spend END) as primary_category_spend
    FROM customer_category_stats
    GROUP BY customer_id
""")

fe.create_table(
    name="ml_catalog.features.customer_category_affinity",
    primary_keys=["customer_id"],
    df=customer_product_features,
    description="Customer category purchase preferences and affinity scores"
)
9. Troubleshooting Guide
9.1 Common Issues
	Issue
	Cause
	Solution

	Training set has NULLs
	Missing feature values
	Check feature table coverage, handle NULLs in pipeline

	Point-in-time join slow
	Large timestamp range
	Add partition on timestamp column

	Feature lookup fails
	Primary key mismatch
	Verify key columns match exactly

	Model scoring errors
	Schema mismatch
	Retrain model with updated features

	Online store latency
	Feature table too large
	Filter to active entities only



9.2 Performance Optimization
# Optimize feature table for lookup performance

# 1. Partition by date for time-series features
fe.create_table(
    name="ml_catalog.features.customer_rolling_features",
    primary_keys=["customer_id"],
    timestamp_keys=["feature_date"],
    df=customer_rolling_features,
    partition_columns=["feature_date"]  # Enables partition pruning
)

# 2. Z-Order on lookup keys for faster joins
spark.sql("""
    OPTIMIZE ml_catalog.features.customer_lifetime_features
    ZORDER BY (customer_id)
""")

# 3. Enable predictive optimization
spark.sql("""
    ALTER TABLE ml_catalog.features.customer_lifetime_features
    SET TBLPROPERTIES ('delta.enableOptimizeWrite' = 'true')
""")
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